RP02G18G5SPA

6W Wide Band Power Amplifier 2GHz~18GHz

<u>Features</u>

- Wideband Solid State Power Amplifier
- Psat: + 38dBm
- Gain: 24 dB
- Supply Voltage: +22V

Typical Applications

Wireless Infrastructure

- Military & Aerospace Applications
- Test Instrumentation

Electrical Specifications, $T_A = +25^{\circ}C$, Vcc = +22V

Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range	2-10		10-18		GHz		
Gain		25			23		dB
Gain Flatness		±2			±3		dB
Gain Variation Over Temperature (-45°C ~ +85°C)		±3			±3		dB
Input Return Loss		10			10		dB
Output Return Loss		10			10		dB
Saturated Output Power (Psat)		38			38		dBm
Input Max Power (No damage)	Psat – Gain Psa		Psat – Gai	in	dBm		
Supply Current	1400 (Max) mA		mA				
Weight	450 g		g				
Impedance	50 C		Ohms				
Input / Output Connectors	SMA-Female						
Finishing	Nickel Plated						
Material	Aluminum / Copper						
Package Sealing	Epoxy Sealed (Standard) Hermetically Sealed (Optional)						

* P1dB, P3dB and Psat power test signal: 200µs pulse width with 10% duty cycle.

* For average CW power testing or increased duty cycle, a 5dB back off from Psat is required unless water/oil cooling system is applied.

Absolute Maximum Ratings		
Supply Voltage	+29Vdc	
RF Input Power (RFIN) Pin_max = Psat - Gainsat	Psat – Gain	
Storage Temperature (°C)	-50 to +125	

Note: Maximum RF input power is set to assure safety of amplifier. Input power may be increased at own risk to achieve full power of amplifier. Please reference gain and power curves.

	Biasing Up Procedure		
Step 1	Connect ground		
Step 2	Connect input and output with 50 Ohm source/load. (in band VSWR<1.9:1 or >10dB return loss)		
Step 3	Connect +22V		
	Power OFF Procedure		
Step 1	Turn off +22V		
Step 2	Remove RF connection		
Step 3	Remove ground		

Environmental Specifications and Test Standards

Parameter	Standard	Description
Operational Temperature		-45°C~+85°C
Storage Temperature	MIL-STD-39016	-55°C~+125°C
Thermal Shock		1 Hour@ -45℃ → 1 Hour @ +85℃ (5 Cycles)
Random Vibration		Acceleration Spectral Density 6 (m/s) Total 92.6 RMS
Electrical & Temperature Burn In		Temperature +85°C for 72 Hours
Shock		 Weight >20g, 50g half sine wave for 11ms, Speed variation 3.44m/s Weight <=20g, 100g Half sine wave for 6ms, Speed variation 3.75m/s Total 18 times (6 directions, 3 repetitions per direction).
Altitude		Standard: 30,000 Ft (Epoxy Sealed Controlled Environment) Optional: Hermetically Sealed (60,000 ft. 1.0 PSI min)
Hermetically Sealed (Optional)	MIL-STD-883	MIL-STD-883 (For Hermetically Sealed Units)

Note: The operating temperature for the unit is specified at the package base. It is the user's responsibility to ensure the part is in an environment capable of maintaining the temperature within the specified limits

Ordering Information				
Part No.	Description			
RP02G18G5SPA	2GHz~18GHz Wide Band Power Amplifier			

Amplifier Use

Ensure that the amplifier input and output ports are safely terminated into a proper 50 ohm load before turning on the power. Never operate the amplifier without a load. A proper 50 ohm load is defined as a load with impedance less than 1.9:1 or return loss larger than 10dB relative to 50 Ohm within the specified operating band width.

Power Supply Requirements

Power supply must be able to provide adequate current for the amplifier. Power supply should be able to provide 1.5 times the typical current or 1.2 times the maximum current (whichever is greater).

In most cases, RF-Lambda amplifiers will withstand severe mismatches without damage. However, operation with poor loads is discouraged. If prolonged operation with poor or unknown loads is expected, an external device such as an isolator or circulator should be used to protect the amplifier.

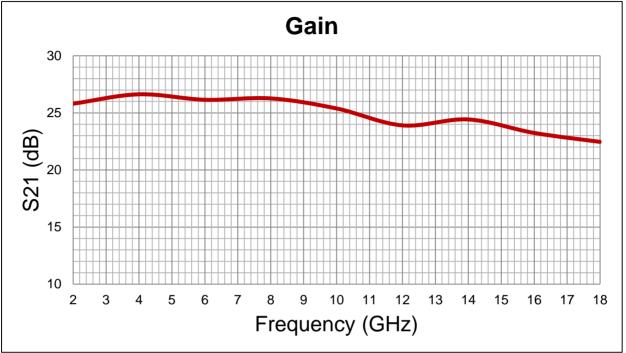
Ensure that the power is off when connecting or disconnecting the input or output of the amp.

Prevent overdriving the amplifier. Do not exceed the recommended input power level.

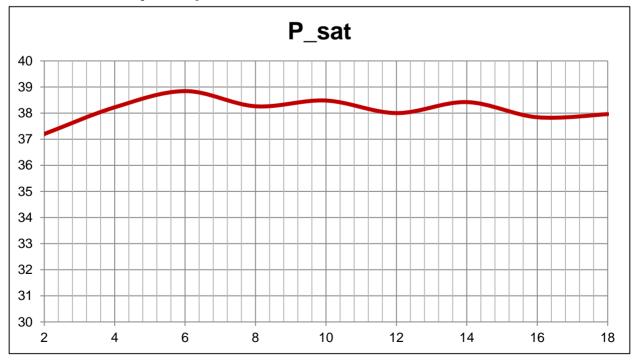
Adequate heat-sinking required for RF amplifier modules. Please inquire.

Amplifiers do not contain Thermal protection, Reverse DC polarity or Over voltage protection with the exception of a few models. Please inquire.

Proper electrostatic discharge (ESD) precautions are recommended to avoid performance degradation or loss of functionality.


What is not covered with warranty?

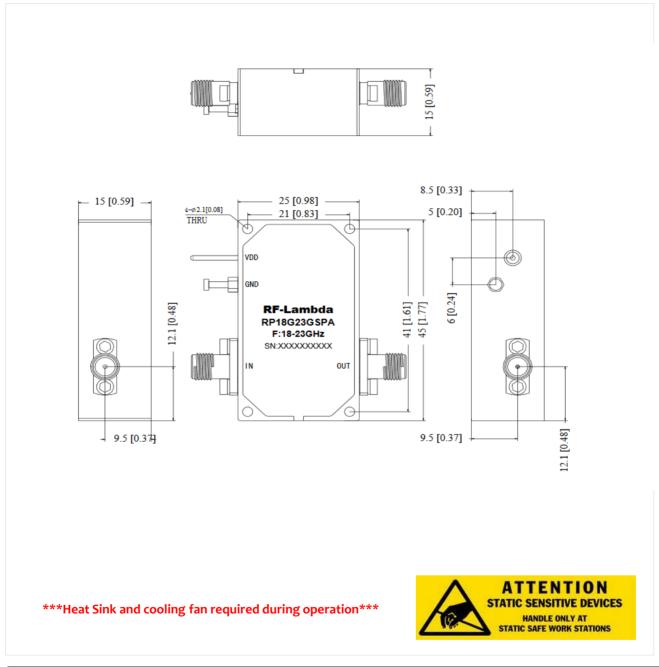
Each of RF-Lambda amplifiers will go through power and temperature stress testing. Due to fragile of the die, IC or MMIC, those are not covered by warranty. Any damage to those will NOT be free to repair.



RP02G18G5SPA

Gain vs. Frequency

Psat vs. Frequency



RP02G18G5SPA

Outline Drawing:

Important Notice

The information contained herein is believed to be reliable. RF-Lambda makes no warranties regarding the information contained herein. RF-Lambda assumes no responsibility or liability whatsoever for any of the information contained herein. RF-Lambda assumes no responsibility or liability whatsoever for the use of the information contained herein. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the user. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for RF-Lambda products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. RF-Lambda products are not warranted or authorized for use as critical components in medical, life-saving, or life sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.